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Summary

Historically water engineering was pre-
dominantly treated within a conventional 
mathematical framework, like Bernoulli 
approach or more advanced Navier-Stokes 
equations; lately by various numerical 
modeling schemes. Here we outline how 
the natural, yet complex water (and related 
fluids) flow and implosion engineering can 
successfully be treated by contemporary fra-
ctal mathematics. Such an approach could 
gradually improve our fluid engineering 
and the planetary use of natural water in 
bio-medical, transport and energy context.

Introduction

Despite remarkable technological succ-
esses, everyone who teaches introductory 
university physics (science) courses is  
aware how patchy our understanding 
of contemporary physics and science 
is in general. Moreover, while our data 
production is growing exponentially, we 
cannot claim an exponential progress in 
our understanding of nature. The progress 
seems rather slow in classical fluid and 
practical water engineering, due to the 
simple fact that we mostly teach engineers 
to use rather conventional mathematical 
approximations (Constantin and Foias, 

1988), even though there exists much more 
potent, and well established, mathematical 
approaches. In this brief paper we outline 
a more appropriate approach to water 
(and related fluids) by using fractal mathe-
matics (Mandelbrot, 1983) in the context 
of fluid engineering. Such an approach 
could gradually enable numerous, useful 
engineering applications, specially in the 
implosion pump development and related 
environment friendly technologies. 

Discussion

It was recognized already in the 1930s that 
spiral motion is a basic form of the motion 
of water in nature, and that was later the 
basis for some nature-friendly technologies 
(Bartholomew 2010).  The combined spiral 
and chaotic motions produce the so-called 
vortex (see Fig.1).

An actual vortex can be observed as the 
bathwater goes down the plughole. The 
Coriolis Effect determines the rotation 
direction of spiraling water's vortex motion. 
The reason for this type of motion is that 
water always tries to follow the path of least 
resistance rather than the shortest straight 
path. The vortex forms as a result of acting 
gravitational and Coriolis fields and enables 
water to reduce flow resistance by curving 

http://dx.doi.org/10.14294/WATER.2012.7


WATER

  

WATER 4, 82-89, December 9th 2012      83 

WATER

inwards. In such a way any resistance 
caused by usual straight motion disappears. 
As water implodes in the vortex, the matter 
at the exterior of the vortex moves more 
slowly than in the center and that causes the 
emergence of a strong centripetal force. The 
suction process that causes matter to move 
inwards is called implosion. The implosion 
vortex motion causes the increase in 
density, the pressure and the flow speed, 
a temperature drop and a reduction of 
frictional resistance. 

In the implosion process the centripetal 
form of motion dominates. This type 
of matter motion results in cooling, 
structuring and condensing. Therefore in 
the implosion water vortex system (Fig. 1) 
water is cooled, structured and condensed. 
The term “structured” is understood as the 
property of the higher order system. Higher 
structured liquid water is nothing else 
than the ensemble of water clusters which 
consist of more than one water molecule. 
Such clusters can be observed whenever 
irregular water molecules build higher 
order systems.

Different polygonal water structures 
(clusters) were reported by Jhon (2004). 
He developed the hexagonal water structure 

Figure 1: Schematic illustration of the water vortex. 

theory that explains the existence of three 
different water cluster shapes. There are 
hexagonal hook-shape, hexagonal chain-
shape and pentagonal hook-shape. The 
water molecules do not exist separately in 
the water system, but rather as a cluster of 
molecules. It was indeed proven by Chaplin 
(2009), that in liquid water, the water 
molecule does not propagate ‘isolated’, but 
in clusters that are continuously forming 
and dissociating. Water clusters held 
together by many hydrogen bonds have 
lower molecular density and are favored 
at lower temperatures and pressures 
(Chaplin, 2009). The structured model for 
water proposed by Chaplin (2012) contains 
a mixture of hexagonal and pentagonal 
substructures and contains cavities capable 
of enclosing small solutes. This model was 
developed by arranging alternating sheets of 
boat-form and chair-form water hexamers 
from the lattices of hexagonal and cubic 
ice respectively. This structure was folded 
to form an icosahedral three-dimensional 
network with capacious pores capable of 
partial collapse due to competition between 
bonded and non-bonded interactions. 
Such clusters appear to be relatively stable 
in liquid water, forming curved surfaces 
when bound together by means of the three 
potential hydrogen bonds on each of their 
faces (Chaplin, 2012). Thirteen icosahedra 
can theoretically build an icosahedra super 
cluster.

Although it may appear that all the above 
mentioned clusters are regularly shaped, it 
is not completely true. The aforementioned 
examples clearly show that at a molecular 
level the liquid water is a mixture of diff-
erent water clusters and water molecules. 
Independently of that approach, if the 
liquid water is taken to be an ensemble of 
clusters, or of water molecules, it is obvious 
that at a molecular level the liquid water is 
an irregularly shaped natural object that 
cannot be appropriately described by using 
usual (Euclidean) geometry.
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Some Insights From Fractal Geometry 

A simple bathwater example illustrates 
that the prevailing natural movements 
are non-linear. Inward spiral (centripetal) 
water motion is non-linear motion and one 
possible way to describe such a system from 
the mathematical point of view is within 
fractal geometry.  

The concept of fractal geometry, introduced 
by Benoit B. Mandelbrot, provides a 
solid platform for the analysis of the 
aforementioned natural phenomena. We 
are dealing with mathematics of non-
smooth objects that can be characterized as a 
general framework for the study of irregular 
sets. Irregular sets provide a much better 
representation of many natural phenomena 
than do the figures of ‘classical’ Euclidean 
geometry (Falconer, 2003). The term fractal 
can be described as an irregular object that 
does not fit into a classical geometrical 
setting, as a set which shows irregularities 
on all scales, or as proposed by Mandelbrot 
as a set with Hausdorff dimension strictly 
greater than its topological dimension. More 
about Hausdorff dimension can be found in 
the literature (Mandelbrot, 1983; Falconer, 
2003). Following these definitions, many 
fractals can be easily observed in nature 
in the form of clouds, islands, rivers, trees, 
waves, fluid motions, etc. 

For this work, of particular interest are 
a water molecule and the dynamical 
implosion water vortex system. The central 
role in fractal geometry is played by 
dimension, meaning number of dimensions 
or dimensionality (Mandelbrot, 1983). In 
this sense it is important to describe the 
term fractal dimension. In literature many 
different definitions of fractal dimensions 
have been proposed, yet following 
Mandelbrot’s definition of the fractal, 
fractal dimension can be observed as 
Hausdorff dimension. It is well known that 
in Euclidean dimensions (D) objects can be 

observed as zero-dimensional (D=0), one-
dimensional (D=1), two-dimensional (D=2) 
or three-dimensional (D=3). The example 
of a zero-dimensional object is a point, one-
dimensional is a curve, two-dimensional 
is a surface and three-dimensional is a 
volume. In fractal dimension (DF) observed 
objects can be larger or smaller than one-, 
two- or three-dimensional. One example of 
fractal dimension represents one of the best 
known fractals, called the Cantor set, whose 
dimension is DF=0.631 (Mandelbrot, 
1983). It means that in fractal dimension, 
the fractal object shows inter dimensional 
properties. Fractals can also be one-, 
two- or three-dimensional, as in classical 
geometry, but more frequent is the case 
where the fractal is, for example, more two-
dimensional than three-dimensional, or 
vice versa. 

Today’s fluid statics and dynamics often 
approximate natural shapes by using 
classical (Euclidean) geometry approach. 
From the aforementioned reasons, it is clear 
that the liquid water system is irregularly 
shaped. For better understanding of both 
fluid statics and dynamics and especially 
water system behavior, a new approach 
dealing with irregular natural water 
molecule shapes by using fractal geometry is 
of high importance. Using such an approach 
it is possible to develop new mathematical 
relations that take into account all shape 
depending properties and much more.

Looking at implosion water vortex system 
from the fractal geometry viewpoint, there 
are two possible approaches, top-down and 
bottom-up.

Top-down Approach

The top-down approach deals with the 
whole vortex system, where a vortex alone 
can be considered as a fractal object that 
consists of water clusters which are also 
fractal objects; those then consist of water 
molecules as fractal objects, and so forth. 
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In this sense the vortex system could be 
studied as a continuous dynamical system 
with a fractal attractor. An attractor is a 
set to which all nearby orbits converge 
(Falconer, 2003). The Lorenz system 
of equations is one example of such a 
system (Lorenz, 1963). Lorenz studied the 
thermal convection of a horizontal layer of 
a fluid heated from below and developed 
deterministic ordinary nonlinear differen-
tial equations to represent forced dissipative 
hydrodynamic flow. He emphasized that 
certain mechanically or thermally forced 
non-conservative hydro dynamical systems 
may exhibit either periodic or irregular 
behavior when there is no obviously related 
periodicity or irregularity in the forcing 
process. Both periodic and non-periodic 
flow is observed when the forcing process is 
held constant. 

Analogously to Lorenz's oscillator (three-
dimensional non-linear dynamical system 
that exhibits turbulent flow and evolves over 
time in a complex, non-repeating pattern) 
(Lorenz, 1963), the water vortex system 
can be characterized as a non-linear hydro 
dynamical system that exhibits a turbulent 
flow.

By using Navier-Stokes equations, conti-
nuity equations and heat conduction 
equations, Lorenz has developed three 
differential equations (Falconer, 2003). 
Solutions of these equations can be 
identified by trajectories in the phase 
space (Lorenz, 1963). The trajectories 
are concentrated onto a Lorenz attractor 
that consists of two discs each made up of 
spiraling trajectories. Certain trajectories 
leave each of the discs almost perpendicular 
and flow into other discs, exhibiting a 
chaotic behavior (Falconer, 2003). This 
Lorenz attractor seems to be a fractal of 
Hausdorff dimension 2.06; similarly to 
Lorenz's study where thermal convection 
was studied, the dynamical water vortex 
system must be studied individually. 

The water vortex system can be considered 
as an open or closed system. An open water 
vortex system corresponds to the water flow 
out of vortex following spiral path, while the 
closed system represents the situation in 
which the water does not flow out.

As a closed hydro dynamical system of 
finite mass the water vortex system can 
be mathematically treated as a finite 
collection of molecules: In such a case 
the governing laws can be expressed as a 
finite set of ordinary differential equations; 
these are generally highly intractable. In 
order to propose soluble equations, the 
vortex system could be approximated by a 
continuous mass distribution. In this sense 
the governing laws can be expressed as a 
set of partial differential equations, with 
dependent variables: pressure, tempera-
ture, velocity and density. In such a system 
as in any real hydro dynamical system, 
viscous dissipation is expected to occur.

So, due to various natural phenomena 
that exhibit turbulent and non-periodic 
flow with a non-smooth surface, the water 
vortex appears to be a rather interesting 
and challenging object of study for the 
applications of fractal mathematics. 

Bottom-up Approach 

The other possibility to deal with the vortex 
within the fractal geometry approach is to 
consider a water molecule as a fractal object. 
A water molecule consists of one oxygen and 
two hydrogen atoms. The basic geometric 
structure of water molecule shows that 
hydrogen-oxygen-hydrogen angle is from 
104.45° in liquid water to 109° in the ice. 
Such irregular geometric water structure 
can be considered as a non-linear object. 
As a water molecule is a structure with an 
irregular shape, using fractal geometry to 
determine its characteristics seems rather 
natural.  

So, let us consider a water molecule as a 
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fractal object F, with a fractal dimension, DF. 
Because of its nonspecific shape, according 
to the Hausdorff approach, the fractal F 
may be covered with balls b, of  diameter 
db, whose measurement unit is γ = db

α, 
where α is Hausdorff exponent. Therefore, 
α-covering measure M can be defined as 
follows:

(1) 

where ε is a measurement unit for identical 
specific shaped objects (boxes). In this 
sense ε can be the length of the box side, if 
the object is a box. In our case object F is 
irregular and as proposed by Hausdorff, ε is 
replaced by db. 

Therefore, fractal dimension DF is defined:

(2)

(3)

Without introducing further mathematical 
considerations it is important to underline 
that the Hausdorff measures generalize 
well-known ideas of volume, surface and 
length. As mentioned by Falconer (2003) 
it is possible to determine the volume of 
α-dimensional ball of diameter 1. If the 
water molecule fractal F can be represented 
as a sum of balls of diameter db, and if it is 
possible to determine volume of each ball, it 
should be possible to determine the fractal 
dimension of the water molecule. 

As we already noted, the water clusters exist 
in the liquid water and consist of water 
molecules (Fig. 2). Cluster building, in this 
sense, can be represented as a process of 
water molecules aggregation. As a natural 
object, a water cluster grows in an apparent 
fractal form, because it is composed of 
irregular shaped fractals, respectively water 
molecules. Aggregation, as an assumed 

process for cluster building, can be defined 
as a physical process in which clusters are 
built up from water molecules. Dealing with 
iron particles, Forrest and Witten (1979) 
have observed that aggregates have fractal 
structures. They interpreted the aggregation 
in terms of the scaling laws. 

Scaling properties are of high importance 
in order to understand the fractals. In 
fractal theory, the scaling properties of 
α-dimensional Hausdorff measure Mα is λα 
(Falconer, 2003).  

Similar to the Forest and Witten (1979) 
approach, the fractal dimension of a water 
cluster could be obtained using the density-
density correlation function g(R) (Vicsek, 
1999):

(4)

Where ρ(R) is a local density at the point 
R. ρ(R) is equal to 1 if the point is a part 
of a  fractal object. If that is not the case 
ρ(R) is equal to 0. As mentioned above, the 
volume of the fractal object V is equal to the 
number of the covering balls N. The number 
of covering balls N with radius s in the D 
dimensional volume can be found through:

(5)

Given the density-density function, from 
this follows the power law behavior g(R) 
∝ R-G. The relation between the density-
density correlation function G, Euclidean 
dimension D and fractal dimension DF is 
DF=D-G. G can be defined using a linear fit 
of ln(g(R)) as a function of ln(R). 

When the fractal dimension of the water 
cluster is known, it is possible to determine 
the fractal dimension of the whole vortex 
system. In literature exists other known 
approaches to define DF , yet in this short 
paper our intention is only to point out 
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that the water system can be meaningfully 
considered as a fractal object on different 
scales. 

Implications For Fluid Dynamics

The goal of the two previous approaches 
(top-down and bottom-up) was to suggest 
that the water system is a fractal object 
and should be treated as such. The main 
applications of such approaches are in fluid 
dynamics, where part of the water system 
is always represented as a regularly shaped 
object.  This immediately seems inadequate 
when one is aware of the irregularly 
shaped water molecules. Although at the 
microscopic level they are connected in 
“regular” pentagonal, hexagonal or other 
structures, the actual water molecules are 
not regular. Because of the irregular water 
molecule structure, one hydrogen atom 
remains always outside the structure. 
Therefore, all actual clusters are irregular.  

The description of icosahedral water model 
can be even more complicated, ie. one can 
use the sphere, cylinder, cube, etc. By using 
the fractal geometry approach, the water 
cluster can be represented in the form that 
actually is observed in the nature, avoiding 
oversimplifying approximations of classical 
geometry.

Independently, whether the considered 
water molecule is a pentagon, hexagon, 
tetrahedron or icosahedron, it is obvious 
that all these objects are irregularly shaped. 
Therefore, a serious task of fractal geometry 
is to define the icosahedral or any other 
water molecular model as a fractal object. If 
the water cluster can be described by fractal 
geometry (reasons are given above), there is 
a logical extension that the implosion water 
process that produces water clusters (higher 
order structure) can also be described 
within the fractal geometry framework.

All aforementioned structures of water 
molecule, polygonal structures, icosahedra 

or vortex system cannot be completely 
described and understood by using the 
classical approach, yet can be treated within 
the fractal mathematics. Defining such 
clusters (with all irregularities) in more 
appropriate ways opens up a completely 
new approach in study of the fluid dynamics. 
A natural fractal is used as a study object 
within the fluid dynamics. 

The core object in fluid dynamics is no 
longer a sphere, cylinder or cube, as a part 
of the water system, but rather the water 
fractal, which is natural, self-similar and 
nicely fits the real situation. Fig. 2a shows 
water fractals (water molecules and water 
pentagonal cluster) inside the pipe. As can 
be seen such structures are not possible to 
represent using natural geometry. The same 
situation can be observed by representing 
of water icosahedral cluster (Fig. 2b).

Figure 2a: Water molecules and a water penta-
gon as fractals.

Figure 2b: Water icosahedral cluster as a fractal.

Developing appropriate mathematical 
models to describe vortex behavior formed 
by implosion, by using fractal geometry, 
will be a good basis for understanding the 
mass, heat and momentum transfer in the 
whole system. 

Observing vortex systems as a closed hydro 
dynamical system of a finite mass and from 
the mathematical point of view as a finite 
collection of clusters (fractals) enables 
the development of a set of differential 
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equations. Such differential equations 
should contain characteristics features of a 
vortex in the form of dependent variables as 
pressure, temperature, velocity and density. 
In treating a finite dynamical system such 
as a vortex, phase space concept, solutions 
of appropriate differential equations are 
very useful. To better understand the 
implosion process, the detailed study of 
pressure, temperature and velocity gradient 
is of great importance, as well. Henceforth 
it is possible to determine all the crucial 
parameters and transport properties in the 
implosion process.

Better in-depth understanding of the imp-
losion phenomenon from the mathematical 
and engineering points of view represents 
a good basis for the development of new 
sustainable and modern equipment, proc-
esses and technologies. Fig. 3 represents the 
scheme of the pneumatic water turbine, one 
example of many possible future nature-
friendly machines. 

Conclusions
In this brief paper we have outlined how 
a fractal mathematics approach could be 
used in studies of water flow and implosion 
processes in contemporary engineering. 
Given new discoveries and insights into the 
behavior of water (Pollack, 2010), we argue 
that such an approach and future exten-
sions in related engineering/mathemati-
cal problems may gradually influence the 
worldwide water management and improve 
our planetary water (and related fluids) en-
gineering within a better, nature friendly 
civilization.

Acknowledgements 

We gratefully acknowledge discussions with 
many colleagues worldwide, most notably 
with Gerald Pollack, Urs von Gunten, Gun-
ther Pauli, Klaus Rauber and Ina Matijevic.

References

Bartholomew A  (2010). The Story of Water, Floris 
Books: 15-75. 

Chaplin M (2009). Theory vs Experiment: What is 
the Surface Charge of Water? Water 1: 1-28.

Chaplin M (2012). http://www.lsbu.ac.uk/water/
clusters.html [29-02-2012].

Constantin P,  Foias C (1988). Navier-Stokes Equa-
tions, The University of Chicago Press, Chicago, 45-
109.

Falconer K (2003). Fractal Geometry - Mathemati-
cal Foundations and Application, John Wiley and 
Sons Ltd, Chichester, 1-57; 186-214.

Forest SR, Witten TA (1979). Long range correlation 
in smoke- particle aggregates. J Phys Math Gen 12: 
L109-17.

Jhon MS (2004). The water puzzle and the hexago-
nal key, Uplifting Press, Coalville.

Lorenz EN (1963). Deterministic Nonperiodic Flow. 
J Atmos Sci 20: 130-141.

Mandelbrot BB (1983). The Fractal Geometry of Na-
ture, W.H. Freeman and Company, New York, 1-115.

Given its rather high complexity, the 
study of implosion phenomena requires 
a coordinated and truly interdisciplinary 
approach. 

Figure 2b: Schematic diagram of the Pneumatic 
Water Turbine.

http://www.lsbu.ac.uk/water/clusters.html
http://www.lsbu.ac.uk/water/clusters.html
http://dx.doi.org/10.1088/0305-4470/12/5/008
http://dx.doi.org/10.1088/0305-4470/12/5/008
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2


WATER

  

WATER 4, 82-89, December 9th 2012      89 

WATER

Pollack, GH (2010). Water, energy and life: fresh 
views from the water’s edge.  Int’l J Design & Nature 
5(1): 27-29.

Vicsek T (1999). Fractal Growth Phenomena, World 
Scientific Publishing, Singapore, 105-257.

Discussion with Reviewers
Anonymous Reviewer: Hausdorff dimen-
sion is inapplicable to physical objects since 
the sets of the coverings are not necessarily 
balls but have arbitrary shape. Eqs. 1, 2 
and 3 are based on balls of equal size. They 
correspond to the Kolmogorov-Minkowski 
definition of fractal dimension.

T. Jurendic and D. Pavuna:  We have 
outlined that the fractal dimension can be 
observed as Hausdorff dimension, because 
it provides a solid framework from which 
dimension-estimation algorithms can be 
derived. 

Eqs. 1, 2 and 3 obviously correspond to 
the Kolmogorov-Minkowski definition of 
fractal dimension representing here only 
one a way of dealing with water systems. 
We are convinced that other formal and 

informal definitions of dimension applying 
different algorithms can be used in order 
to determine the dimension of the above 
mentioned water fractals.

Anonymous Reviewer: Would the authors 
expect that subjecting water to a vortex will 
change any of water's properties and, if so, 
have they checked this?

Jurendic and Pavuna:  We expect that 
subjecting water to the vortex 'treatment' 
alters several of water's properties like 
density, pressure, temperature, entropy, 
structure... In the past, several authors 
have  reported such changes (an example: 
Alexandersson O (1990): Living Water, 
Newleaf (Gateway Books), Ireland) yet 
at present we are working on our own 
experimental verification of these and 
other related phenomena and that will be 
published in our future papers.

Obviously this topic deserves much more 
attention in the 21st century and we trust 
that our insights will provoke many more 
constructive discussions and more focused 
research. 


