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1. Abstract

The cluster model of liquid structure explains the origin of 
the forces that are responsible for osmotic phenomena. 
In contrast to the many textbook explanations based on 
thermal motion of solute molecules, the model, based 
on coherent co-operative motion of solvent molecules 
(water), is shown to explain also other hydration 
mechanisms, including protein function. Its central 
concept, the pressure pixel, is defined as the volume 
occupied by a molecule in a perfect gas (about 40 cubic 
nm at ambient conditions), which is assumed to be the 
smallest volume in which pressure is exerted in liquids 
also. The collision mechanism of the familiar kinetic 
theory of gases is replaced by co-ordinated motion of 
molecules of solution propagating as a structure wave. 
It is shown how, when clusters of different solutions in 
contact carry and exchange equal energies (kT), cluster 
size, as judged by wavelength, is predicted to be in the 
1 nm size range and obey the deBroglie relation. In 
addition, it is emphasized that long-standing results 
from X-ray, electron and neutron scattering give the 
fundamental protein domain size also in this range. 
This physical property indicates that both water clusters 
and protein domains, support the same wave motion. 
It is further concluded that oscillation of the H-bonded 
internal structures of domains must therefore also be 
periodic, with α-helices performing longitudinal and 
β-sheets performing transverse motion in synch with 
the structure wave of the whole medium. 

2. Introduction
The oft quoted phrase that water is essential for life is 
normally interpreted to mean that water is the universal 
medium in which life originated and evolved. However, in 
this presentation, water is not viewed as the medium, but 
as the agent.  On this watery planet osmotic mechanisms 
show their presence in the creation of vast deposits of clay 
soils, in the regulation of turgor in plants, and in the ability 
of cells to control the dynamics of the gelled state of their 
cytoplasm.  On the other hand, osmotic mechanisms can 
also be a nuisance to us when, for example, grass roots 
crack the garden path, or swelling soils cause buildings to 
move, and we must manage the high pressures needed to 
run filtration in desalination plants.

The most popular explanation (among many) found 
in physics texts, asserts that osmosis is “a diffusion 
process.”  It is the result of collisions caused by thermal 
molecular motion in liquids (water) – that is, diffusion – 
which produces flow against pressure and compensates 
for entropy increases.  However, both these textbook 
explanations contradict bedrock principles of physics.  The 
first (diffusion against pressure) contravenes Newton’s 
second law of motion, and the second (build-up of 
solution pressure) contravenes the thermodynamic law of 
minimization of free energy.  So, to proceed we first need 
to know the answer to the question: What then does cause 
pressure in liquids?

Pressure is a macroscopic phenomenon.  As Pascal taught, 
pressure is transmitted from wall to wall throughout a 
fluid body – or put another way, each wall of its container 
feels the presence of the others.  The Kinetic Theory of 
Gases explains pressure in terms of molecular collisions 
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on the micro level; however, this interpretation cannot be 
extended to liquids, where the close-packed molecules are 
bonded to one another by tensile forces.  In the cluster-
wave model, it is collision of the structure wave with the 
boundaries, as opposed to speeding gas molecules, that 
causes pressure in liquids. 

This hypothesis means that it is the wave rather than 
molecules, that carries the impulses and to comply with 
Pascals Principle, the wave must travel back and forth in 
all directions throughout the medium and be reflected at 
its boundaries. In contrast to gases then, the mechanism 
at the micro level in liquids resembles the way force is 
produced by a spring pressing against the walls of its 
container, whereby each wavelength can be pictured as 
one turn of the spring. We imagine that when the spring is 
squeezed, liquid media come under increased pressure – 
or the more turns in the spring, the smaller their size, but 
the greater their force. According to this model, the space 
occupied by one turn and the energy it carries defines the 
pressure pixel. Clusters are mesoscopic entities above 
the level of molecules, which are both particles and 
waves occupying a 3D shape in the medium. They are 
the physical manifestation of the pressure pixel, whose 
size is equivalent to the volume occupied by a single gas 
molecule in an ideal gas,  u = kT/P (Watterson, 1987). 

It follows that the concept of a cluster used here differs 
from the commonly accepted meaning, which depicts 
a group of molecules bonded together acting as a unit 
particle.  In the present model on the other hand, the 
meaning refers to a regular geometric arrangement 
with quasi crystalline, as opposed to random, structural 
properties. Hence a moving, or flickering, cluster is to be 
visualized as a moving pattern, not a moving collection of 
molecules. In fact, in osmotic processes, such geometric 
solvent clusters can translate to-and-fro in either direction 
between solution media in contact to achieve equilibrium 
(from low to high pressure, or vice versa) without flow of 
solvent mass. Moving patterns constitute a wave, and this 
wave provides the basis for the transfer of momentum 
and energy.

In 1987, I proposed that osmotic equilibrium between 
two solutions (commonly separated by a semipermeable 
membrane) can be explained using concepts analogous 
to those we use as the basis of the kinetic theory of gases. 
Equilibrium occurs under those conditions where the 
frequency, f, of clusters crossing through the membrane 
from each side, and the quantum of energy, kT, carried 

by each cluster are equal (Watterson, 1987). 

f  =  n1v1  =  -n2v2   =  v1/u1  =  -v2 /u2  Equation 1

and   

kT  =  P1u1  =  P2u2  =  M1v1  =  M2v2 Equation 2

where n, v, u, M, and P represent concentration, velocity, 
volume, momentum, and pressure of clusters carried 
by the structure wave in the direction normal to the 
membrane boundary. These two conditions mean that 
the net energy flux, fkT, across the boundary is zero, since 
v2 and  M2 are opposite in sign (negative) to v1 and M1. 
Calling on the gas analogy again here, these equations can 
be interpreted in terms of velocities of two different types 
of gas molecules, with that of the more concentrated one 
traveling at the slower speed to give the same striking 
rate on the boundary. Likewise, those molecules with 
higher speed will have lower momentum to keep the 
kinetic energy of the two gases equal.  But this analogous 
picture is purely imaginary. Molecules of different gases 
cannot cross the boundary and mix into each other, 
because they cannot change their velocities or momenta. 
A more reasonable analogy depicts the gas molecules 
colliding at the boundary surface and rebounding off it 
rather than crossing through it and mixing. In this case, 
the dynamic parameters are described by the familiar 
textbook example of particle collision.  

3. The Gas Analogy
When two elastic particles, masses m1 and m2, collide, 
they rebound according to the laws of conservation of 
energy and momentum. We begin using the ideal model 
of two billiard balls, which is the favored scenario of 
physics texts illustrated in Figure 1. Their average velocity 
is given by

v  =  (m1v1 + m2v2)/(m1 + m2)  Equation 3

where v1 and v2, are their velocities and the difference in 
their velocities is given by

d  =  (v1 - v2)/(m1 + m2) Equation 4

normalized to total mass (m1 + m2).

Straightforward algebra shows that their combined 
kinetic energies is given by

KE  =  m1v1
2/2  +  m2v2

2/2 Equation 5

       =  (m1 + m2)v2/2  +  (m1 + m2) m1m2d2/2 Equation 6

       =  E  +  D Equation 7
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This result describes the ideal case of a collision of 
perfectly elastic balls. In real (non-elastic) events, the 
kinetic energy is not conserved, and KE after the collision 
is given by E, plus a variable amount of D, of which some 
or all is lost as heat.  In the favored example you find 
in physics textbooks, velocities are measured by the 
observer relative to the fixed billiard tabletop, assumed 
to be stationary.  This means that, since E depends on 
the frame of reference, the energies represented by E 
are relative energies, while those represented by D are 
absolute, since they depend on the difference (v1-v2) only, 
which has a constant value whether the billiard table is 
moving or not.

The reference frame condition of interest to us is when 
balls collide with equal and opposite momenta, since 
then their average velocity is zero

m1v1  =  -m2v2 Equation 8 

      v  =    0 Equation 9

and the sum of their kinetic energies, m1v1
2/2 and m2v2

2/2, 
equals D since now E=0.  However, at the instant of the 

Figure 1. Scheme of the EDS© device.

collision the energy of each flows into the opposite ball 
resulting in a uniform energy density throughout the 
combined single mass (m1+m2)

m2v2
2/2m1  =  m1v1

2/2m2 
                    =  (m1v1

2 + m2v2
2)/2(m1+m2)  

                    =  D/(m1+m2) Equation 10

from the algebraic identity,  a/b = c/d = (a+c)/(b+d). 

This result indicates that at this instant, every molecule 
of the material of the balls has the same energy, whether 
originating in m1 or m2. And importantly, these algebraic 
terms no longer represent kinetic energies, but rather 
they represent a summed elastic wave resulting from 
transduction of mechanical kinetic energies down to 
micro molecular vibrations. In the case of perfect elastic 
collisions, rebound then follows when the wave is 
reflected off the balls’ internal surfaces, as it splits into 
the two separate kinetic energies again.  Therefore, the 
analogy tells us that, during this event, the original kinetic 
energies were both transduced (changed hierarchical 
level) and transferred (swapped between balls).  We 
will see later that this result introduces the concept of a 
transduction mechanism applicable to protein function.

To examine this scenario a little further, we imagine the 
case of inelastic balls that fuse on impact.  Here, the 
resulting fused mass, (m1+m2), stops moving as before, and 
the total kinetic energy KE, again equal to D, is transferred 
down into frictional molecular motion. In such non-elastic 
collisions, molecular vibrations are non-coherent and do 
not sum to produce a macro elastic wave that causes the 
rebound. We normally expect such non-coherence to 
produce heat, i.e., infrared radiation, but of course the 
wavelength of emitted radiation depends on the strength 
of the impact. This result describes a dispersion step, in 
which macro kinetic energy is dissipated down into the 
micro level, and then even to the nano level of radiation. 

The molecules in both balls all arrive at the point of 
impact at the same instant, because they constitute 
mathematically ideal masses of zero volume rather 
than extended 3D volumes occupied by clusters in a 
liquid medium. Volumes must take time (period) to 
pass through the boundary depending on the shape 
of the wave (wavelength).  The close parallel of the gas 
analogy to osmotic mechanisms becomes clear, when 
we expand the point masses (billiard balls) m1 and m2 
in space, so that they now each occupy unit volume as 
in a perfect gas. In this expanded model, the variables 

Figure 1. Elastic Collisions. Textbook illustration of the ideal 
elastic collision of two billiard balls. Their average velocity, 
v=(m1v1+m2v2)/(m1+m2), has a constant value before, at, and 
after, the collision. The condition discussed in this paper 
occurs when the event is observed such that v = 0;  that is, 
when the balls become instantaneously stationary on contact 
because they have equal but opposite momenta.  The balls 
rebound off one another with velocities that are equal but 
opposite to their initial velocities. In this illustration, v1 > -v2, 
because m1 < m2.
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n1 and n2 of Equation 1 now represent concentrations 
of single isolated molecules colliding with the boundary 
separating two gases

f m0  =  (n1m0)v1  =  -(n2m0)v2   Equation 11

         =  m1v1  =  -m2v2 Equation 8

where m0 is the molecular mass of the material 
constituting the balls, so that Equation 8 now refers to unit 
volume. This identity shows us that the interpretation in 
terms of concentrations of gas molecules is equivalent 
to that of solid balls with equal but opposite momenta, 
even though the collision event is now imagined as being 
diluted in time and space – an instant becomes period 
and a point becomes wavelength.  See Figure 2 for a 
simplified model of energy concentrations distributed 
within a spatial grid.

In summary:  
To compare the three analagous events, we began by 
describing energy transfer between two solid bodies (bil-
liard balls), called particle collision (Fig. 1) governed by 
Equation 8.  In this case the exchange between the two 
particles happens instantaneously on impact and results 
in the molecules of both particles sharing equal energy 
given by Equation 10.

Next, this result is the same as that describing the ex-

Figure  2. Pixel Grids. Two-dimensional diagrammatic 
representation of two energetic regions of space that are 
subdivided into grids of pixels of volume defined by Equation 
17, u=kT/P. On the left there is a lower concentration of 
energy (fewer pixels) than on the right, meaning that for 
representation of two media, either two gases or two liquids, 
the region on the left would be under lower pressure than that 
on the right. Under the assumption that each pixel contains 
an equal quantum of energy (kT), then the system remains 
unchanged if the pixels cross through the boundary at a one-
for-one frequency as given in Equation 1.

Figure  3. The Gas Analogy. Representation of two imaginary 
gases in “osmotic equilibrium” is next depicted by introducing 
point masses into the grid, whereby those on the left of 
the boundary each have smaller momentum, M1 < M2, but 
greater velocity, v1 > -v2 than those on the right. The gases 
may have equal or different molecular masses; however, their 
velocities are such that the values of their momenta remain, 
M1 < M2. This hypothetical equilibrium state can be converted 
into the realistic event depicting elastic collision of Figure 
1, if we imagine equal volumes of each gas to be collapsed 
inward (compressed), converting volume concentrations, 
n1 and n2 into point masses, n1m0 = m1, and n2m0 = m2 
(see Equation 11). For explanatory detail, see my website 
https://www.thewaterpixel.com.  

Figure 4.  Osmotic  deBroglie  Waves. In the case of osmosis, 
the pixels contain a continuous liquid medium in place of the 
idealized point masses of gas molecules. The momentum 
is now a density filling each pixel volume, u=aλ. Using the 
same basic assumption that pixels exchange at a one-for-
one frequency, then their momenta are determined by the 
deBroglie relation, Equation 13, such that the larger faster 
pixels have the smaller momentum. 
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change between two gases of different concentrations 
and pressures (Fig. 3).  The molecules of both gases have 
the same (average) energy, kT, which they exchange one-
for-one with frequency given by Equations 1 and 11.

Finally, an identical spatial grid of two solutions as that of 
two gases is used to model osmotic equilibrium assum-
ing that the volume occupied by each gas molecule is the 
same as the volume of the pressure pixel in a liquid oc-
cupied by the cluster wave (Fig. 4).

4. Osmosis
At the liquid boundary, the structure waves mutually 
share their energies as did the colliding mass particles 
(billiard balls) as shown in Equation 10. However, motion 
does not reverse at the boundary causing the waves to 
rebound off one another but continues on into the op-
posite medium. Unlike the case of colliding particles that 
must retain their masses following the rebound event, 
here they are not entities with mass, but the oscillating 
geometric structural patterns described above in the In-
troduction.  Thus, clusters leaving one liquid medium can 
adjust their dynamic parameters to satisfy conditions in 
the new medium they enter.

Here, there is no momentum in the familiar sense of the 
mechanical concept, M = mv, because the molecules of 
the solutions are not in macro translational mode.  Liq-
uid may, or may not, flow across the boundary, but when 
equilibrium is reached there is no longer net translation 
of mass. As noted above, n1 and n2, now refer to cluster 
concentrations, i.e., structural entities with volumes, not 
mass entities. They are rather pixels of volume, u = a λ, 
where a is the cross-section area of the wave’s forward 
movement across the boundary, and  λ its wavelength, 
and the momentum that each carries is now smoothed 
out as a density rather than existing in a point. Since they 
flow into each other mutually at a rate of one-for-one, 
their cross-sections are equal in area and we have from 
the frequency in Equation 1

v1 / λ1  =  v2 / λ2  Equation 12 

and hence from Equation 2 

M1 λ1  =  M2 λ Equation 13

Showing that cluster size as measured by λ is determined 
by momentum according to the deBroglie relation.

This analysis attributes a vector property to cluster dy-
namics. In fact, the vectorial direction was already as-
sumed in the discussion on the force exerted at the 
boundary, that is, normal to the membrane. On the other 
hand, deBroglie’s hypothesis of 1924 defined a momen-
tum wave from his analysis of quantum levels in atomic 
orbitals, and thus the present derivation is independent 
of his argument. Therefore, by analogy, the cluster model 
leads to the conclusion that liquid structure may also be 
a quantum phenomenon (Fig. 4).

In the traditional osmotic experiment, the solvent phase 
(usually water) denoted below as solution 1, is separated 
from solution 2 (say, salt in water) by a semi-permeable 
membrane. Solution 1 is open to the atmosphere and 
therefore atmospheric pressure, whereas solution 2 is 
confined. Osmotic equilibrium is reached after solvent 
flows through the membrane into solution 2 raising the 
pressure therein resulting in the inequality P 2 > P 1 , giv-
ing the familiar relation for osmotic pressure

                                         Π = P 2 – P 1 Equation 14

Then from Equation 2  Π = (n 2 – n 1) kT  Equation 15

showing that osmotic pressure is the result of an increase 
in cluster concentration. Comparison with van’t  Hoff’s fa-
miliar equation identifies (n2-n1) as the increase in solute 
molecule concentration in solution 2 above solution 1.   
I’ve shown elsewhere that, since n and u are the inverse 
of one another, the increase corresponds to decreas-
ing wavelength, and hence an increase in the number of 
nodes (or antinodes) in the wave. Furthermore, I argued 
how this decrease in cluster size is the result of the disrup-
tive effect that foreign molecules must have on structure 
in the solvent medium. And we now see how this change 
is accompanied by an increase in cluster momentum in 
the solution, leading in turn to the measured increase in 
pressure there (Watterson, 1995). 

The traditional formula quoted in Equation 14 is a special 
case because P1 is always taken to be the pressure on 
pure solvent under laboratory conditions. A more general 
statement describing the phenomenon is the relation 
between two solutions which are in contact but do not 
mix,

P2 / P1 =  n2 / n1  =  λ1 / λ2 Equation 16 

At normal laboratory conditions, P=1 atm and T=300 K,  

u  =  kT/P  =  a λ  =  4 10-26  =  40 nm3. Equation 17
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This value is, of course, an average volume since we ex-
pect the structure in pure liquid medium (solvent/water) 
to be distributed over a wide range of sizes.  In bulk me-
dium under general isotropic conditions in the absence 
of solute surfaces, the average cubic volume has an edge 
of the order of 3 nm.

Spectroscopic studies are widely used in the search for 
the answer to whether liquids are structured or not. The 
controversial co-existence of two distinct densities in 
water (LDW and HDW) at ambient conditions, and the 
search for the associated thermodynamic parameter 
– their critical point (LLCP) – is now more than two de-
cades old! (Huang et al., 2009; Voeikov and delGiudice, 
2009; Jansson et al., 2010; Nilsson et al., 2012; Musumeci 
et al., 2012; Taschin et al., 2012; Soper, 2013). Extensive 
neutron and electron scattering studies have so far failed 
to yield a clear answer; indeed, many researchers have 
concluded that spectroscopic studies can be interpreted 
in terms of a homogeneous medium without postulating 
the existence of clustering. Neutron diffraction is a partic-
ularly direct method as it can be applied at normal labo-
ratory conditions (Towey et al., 2016; Teixeira, 2017). The 
energy of the radiation at ambient temperature (room 
kT) corresponds to a wavelength in the 1 nm range. On 
the other hand, electrons need to be accelerated to an 
energy about 50 times higher to achieve a comparable 
wavelength, being some 2000 times lighter than neu-
trons. Recent reviews discuss many of the proposals in 
support of either the one state or two state model. How-
ever, whichever interpretation is eventually agreed to, 
it is clear that this technique reveals the existence of a 
collective species of water molecules in this size range. 
But, as explained in the Introduction, the model under 
discussion in this presentation is not in line with the pic-
ture of two distinct density species because it takes a 
wave form. As originally proposed in 1981, this picture 
likens an aqueous medium to a continuous spring with 
the dynamic properties that sustain the propagation of 
an energy wave and its associated structural fluctuations 
rather than independent islands of different densities.

Further strong evidence is given by the existence of the 
hydration force, which shows that ordered layers with 
thickness in the nm range form at hydrophilic surfaces 
(Israelachvilli, 1992).  These structures exhibit properties 
expected of internally bonded clusters, since they actively 
exclude solutes from the zone adjacent to the surface.  
Many researchers have dubbed the water composing 
these layers “exclusion zone” water.  Additionally, the lay-

er thickness can be reversibly controlled and monitored 
by applying IR radiation – a property demonstrating that 
clusters are dynamic entities (Chai et al., 2009; Chen et 
al., 2012; Hwang et al., 2018). The hydration force is thus 
a non-random force able to do work by exerting lateral 
tension parallel to the interface and outward pressure 
normal to the interface – the possibility of complex vec-
tor action we will meet again in the next section.  Such 
dynamic properties invite the obvious conclusion that 
clusters were involved in the origins of prebiotic life (in-
terested readers can find further discussion of this idea 
on my website, https://www.thewaterpixel.com).

5.  Protein Crystallization
An unexpected, even surprising, property of proteins is 
that the size of their basic building block, a protein do-
main, has this dimension also.  It is the case quite inde-
pendently of function, even though it contravenes the 
postulates of statistical thermodynamics. This uniformity 
of molecular structure shown by a population of such a 
vast number of isolated chain molecules is the underly-
ing explanation for the appearance of neutron scatter-
ing patterns observed in protein solutions decades ago 
(Giordano et al., 1990), and for the unexpected phenom-
enon of protein crystallization, which happens at normal 
laboratory temperatures. In fact, the first X-ray structures 
obtained by the groups of Kendrew and Perutz were 
both single domain molecules of dimensions in the 1 nm 
range (Kendrew et al., 1958; Perutz et al., 1960). The spa-
tial regularity achieved in samples of such vast numbers 
as they crystallize can be accounted for by the transmis-
sion of vectorial information across and throughout the 
intervening medium – a structure wave.  In addition to 
spatial regularity, such large molecules composed of 
over 1000 atoms each need controlled coherence as they 
adopt their orientation to allow crystals to form, which 
must be achieved by long-range forces present in the me-
dium suppressing the background of disruptive thermal 
motion. I have discussed this model in extenso elsewhere 
(Watterson, 2024). 

As far as I am aware, there is no accepted explanation of 
protein crystallization based on the principles of thermo-
dynamics. Direct physical attraction between molecules 
does not exist – in fact, there is no obvious contact be-
tween them, as crystals contain a high-water content, 
which can be as much as 50% w/w, with the result that 
their physical state is best described as a soft gel. When 

https://www.thewaterpixel.com
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we consider the vast number of molecules involved to-
gether with the degree of precision that results, protein 
crystallization is perhaps the most spectacular example 
of the creation of order in a simple solution induced by 
molecular structure in water. Such observations give the 
strong indication that the explanation must involve the 
reasons for the well-known (and often unwanted by ex-
perimentalists) tight water-protein interactions. Those 
interactions are not attractive forces in the sense we nor-
mally think of (e.g., ionic, H-bonds . . .), but a force gener-
ated on a higher hierarchical level exemplified by spatial 
fitting, thereby helping to intensify a geometric grid al-
ready present as a nascent form in the pure medium.  

Another promising avenue is the comparison of protein 
crystals with water samples studied under negative pres-
sures (Bergonzi et al., 2016).  Since the pressure inside a 
crystal is negative, or close to zero, information on molec-
ular interactions in water prepared under tension (some-
times called “stretched water”) in the absence of protein, 
should be applicable to our models of how the spontane-
ous growth of crystals happens and to explaining their 
stability once formed.

The pattern of H-bonds in a particular protein is co-
valently fixed, whereas in liquid water it is not. Indeed, 
the internal structures of over 100,000 individual pro-
teins are today already known [see Protein Data Bank 
(www.PDB.org)]. On the other hand, the arrangement of 
bonds in liquid water is flexible, allowing them to re-align 
according to the pattern set by the presence of a fixed 
protein domain, and in this way support the passage of 
the wave. In proteins the arrangement consists of group-
ings of two simple structural elements, α-helices and 
β-sheets, each 5-10 H-bonds in length spanning 1-3 nm, 
of which the H-bonds in helices are positioned in series 
and those in sheets are in parallel (Fig. 5). Such simple 
spatial arrangements suggest collective oscillations sup-
porting longitudinal and transverse motion, respectively 
(Zolotaryuk et al., 1999; Zolotaryuk and Salerno, 2006; 
Brizhik et al., 2009). Indeed, both types of motion occur-
ring simultaneously (called LO-TO splitting), have been 
observed in water on the time scale of Debye relaxations 
(Nibali et al., 2014; Elton and Fernandez-Serra, 2016).  

This hypothetical mechanism of mutual influences be-
tween protein domains and cluster waves – protein struc-
tures inducing cluster wave shape on the one hand, and 
wave propagation stimulating domain crystallization on 
the other – suggests the further implication that the ori-
gin of the protein domain is to be found in water because 

of the multitude of variations it offers. Readers fond of 
music need only remember that the same note sounds 
different when played on different instruments, and that 
talented players can even identify overtones responsible 
for the difference. 

Mathematical readers on the other hand, interpret this 
sonic phenomenon in terms of the detail they find hidden 
in Fourier analysis, where variations in amplitudes and 
frequencies lead to almost endless harmonic possibili-
ties. I feel that these modes of thinking are analogous to 
the way in which protein chemists depict internal bonding 
as folded ribbons held together by the fixed non-random 
pattern of the basic α and β structures. So, by extension, 
a cluster of 1500 water molecules with flexible bonding 
have the possibility of adopting arrangements that oscil-
late in tune with that fixed internal protein pattern. Such 
knowledge would hopefully throw light on the mystery of 
the uniqueness and stability of the protein fold – perhaps 
the most basic question in all of biology.

Conclusion
This paper opens by quoting the popular belief that wa-
ter is the necessary environment for the origin of life and 
closes with the predication that the internal structure of 
proteins facilitates the transmission of an energy-carry-
ing structure wave.  It is argued that water is not just the 
happy chaotic medium for the appearance of life, but a 
medium composed of molecular order underlying the co-
ordinated activity we associate with living matter. 

In this model, clusters are not seen as fixed groupings 
of molecules, but as quasi crystalline geometric arrange-
ments that move through the medium.  This movement 
takes the form of a wave, which is responsible for exert-
ing forces in liquids as opposed to the mechanism of 
collisions between molecules that we know operates in 
gases.  Clusters are the manifestation of energy quanta 
defined by the pressure pixel – the smallest volume ex-
periencing the force of pressure – the volume occupied 
by a molecule in a perfect gas, i.e., about 40 cubic nm (a 
cube with an edge of 3.3 nm) under normal laboratory 
conditions.  Thus, this picture of a cluster is that of a mov-
ing volume rather than a moving mass.  The comparison 
of how pressure is exerted in a liquid with that in a gas is 
illustrated diagrammatically in Figures 3 and 4.  

The gas analogy also provides an example of the crucial 
dynamic of energy transfer.  When two particles of dif-
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ferent masses collide, simple algebra shows they share 
their energies.  At the moment of impact, the energy of 
one flows into the other resulting in a uniform common 
energy given by Equation 10.  In the language of physics, 
their kinetic energies are transduced into the new form 
of potential spring energy of the combined mass, before 
reverting into the kinetic energies as they rebound off 
one another.  In a continuous medium on the other hand, 
the cluster-wave model holds that, rather than colliding, 
clusters travel through each other and cross the bound-
ary (semi-permeable membrane) as they move to-and-
fro between solutions.  At osmotic equilibrium there is 
no net transfer of energy, so the clusters must cross from 
either side at the same frequency.  This crucial condition 
expressed in Equation 1 leads directly to the deBroglie re-
lation which determines their wavelengths.  Results from 
osmosis set the sizes of clusters by modeling the medium 
in a simplified depiction as a grid of cubes in the 1 nm 
range in agreement with the above calculation based on 
the gas equation.

This contribution places great emphasis on results from 
structural studies in the biological field of X-ray crystallog-
raphy. This technique has established the spatial regular-
ity seen in thousands of protein crystals.  The similarity in 
form and physical dimensions shown by protein crystals 
to the array of pressure pixels in osmotic systems indi-
cates that the crystalline protein gels are constructed of 
clusters fitting together with protein domains.  Further-
more, the wave mechanism of pressure in liquids, trans-
duction between kinetic and elastic energies, scattering 
studies and the 3D conformations adopted by protein 
crystals, taken together suggest that such observations 
must arise from the same underlying phenomenon.  The 
thread linking them is the transmission of a wave.  In liq-
uids, molecules oscillate cooperatively forming coherent 
clusters that adopt size and shape in response to pres-
sure conditions.  On the other hand, in protein molecules 
the internal bonding is fixed; however, synchronized os-
cillations of the two basic bonding motifs, α-helical and 
β-sheets, support the longitudinal and transverse modes 
of wave motion.  Therefore, this mechanism operating 
in biological systems ensures that the same molecular 
movement is transmitted through both physical and bio-
logical materials.
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