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Abstract
Macroscopic corona images of droplets of different kinds 
of water were examined by collecting dozens of image 
parameters. A statistical comparison of these param-
eters using Data Science (machine learning) algorithms 
allowed us to differentiate water types with significant 
accuracy. The ability to differentiate water types using 
macroscopic corona imaging combined with machine 
learning algorithms presents topics for further studies.

Introduction
The Corona effect, the electrical discharge caused by the 
ionization of the air surrounding a conductor carrying a 
high voltage, began to be studied at the beginning of the 
20th century with the empiric work of F.W. Peek in 1929 
(Hartmann, 1984), who characterized the threshold field 
to create the effect. It was then studied in the high-volt-
age industrial electrical network to understand the vibra-
tions it induces in the cables (Farzaneh, 1986; Maaroufi, 
1989) and then to monitor the resulting energy loss. In 
addition to the work aiming at reducing the corona effect 
in high-voltage transmission, research on this topic has 
led to commercial and industrial uses, such as the pro-
duction of ozone (Chen and Davidson, 2002; Noll, 2002), 
the generation of charged surfaces (McGraw-Hill, 2007), 
and the treatment of certain polymer surfaces (Carley 
and Kitze, 1980; Tazuke et al, 1980), to name a few. 

The use of the corona effect in imagery dates back to 
1939, when Semyon Kirlian started to photograph the 

corona effect. It was then used by different people for sci-
entific and non-scientific works. In the context of major 
breakthroughs in artificial intelligence in the last decades, it 
has been used in image analysis of large amounts of data 
to explore or revisit new fields of studies. 

The goal of this study is to demonstrate that a Corona Ef-
fect Macroscopic Imaging (CEMI) technology, based on 
the well-known physical phenomena of corona discharge 
(Loeb, 1965), also called Electrophotonics, can be used to 
obtain a new type of information about the objects under 
study. The Electrophotonic DataPhoton System (EDS©) is 
the prototype device (Vieilledent et al, 2016) that we used 
in combination with machine learning algorithms to clas-
sify and differentiate between waters according to their 
properties. This study focuses on how to use macroscopic 
corona imaging on different types of water drops to extract 
corona parameters and so be able to identify and classify 
the drops according to a coherent multidimensional statis-
tical approach using machine learning algorithms.

The Basis of Electrophotonics:  
Understanding Light and Water
Light

The hypothesis that light is composed of particles and 
therefore that it is corpuscular in nature was put forward 
by Sir Isaac Newton (Newton, 1952) in 1704 who, with his 
numerous experimental studies describing many physical 
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phenomena, was able at the time to reject the wave theo-
ries of light of R. Hooke, C. Huygens, or L. Euler. In the 
19th century, however, experimental observations such 
as the experiments on interference by T. Young (Young, 
1802) or the discovery of polarization by E-L. Malus (Ma-
lus, 1811) suggested a wave nature to light. It is through 
the wave theory of A. Fresnel (Fresnel, 1826) and then fi-
nally the unification of electricity and magnetism by J.C. 
Maxwell (Maxwell, 1873) that light became then consid-
ered as a wave, more exactly an electromagnetic wave.

At the end of the 19th century, with the work of Max Planck 
and his hypothesis on the energy quantum (Planck, 1900), 
the classical vision that we had of matter underwent up-
heaval. The works of Poincaré, Lorentz and then Einstein 
on special relativity and its equivalence relation between 
mass and energy E = mc² (c: speed of light in vacuum) 
(Einstein, 1905a) have questioned the nature of matter; in 
1905, Einstein also questioned the nature of light, yet so 
well described by J.C. Maxwell, with his work on the pho-
toelectric effect (Einstein, 1905b). This last questioning 
with the wave-corpuscle duality leads us to consider that 
the nature of physical reality is not instinctive. In the case 
of light, it can be observed as an undulatory structure or 
particle (photon). In these conditions, the corona effect 
can be considered as the visualization of the emission of 
photonic particles caused by the electrical discharge ap-
plied to an object.

Water

The comprehension of the structure of water and its 
properties is very important for understanding the 
mechanism by which water contributes to the emission 
of photons during electrophotonic discharge. Wiggins 
(Wiggins, 2008) showed that water is composed of two 
liquids of high and low density. It has been validated by 
international teams of researchers using the most recent 
X-ray diffraction techniques (Perakis et al., 2017). There 
is a zone at the interfaces where water is comparable to 
a negatively charged gel, the “Exclusion Zone” (EZ) de-
scribed by G. Pollack (Pollack, 2013). Indeed, at the inter-
faces (liquid-solid or liquid-gas), water molecules have 
a dynamic organization in rings or chains (Vandanjon, 
2021). Water molecules assemble very transiently due 
to hydrogen bonds (10−12 𝑠) forming liquid crystal-like 
structures (clusters). Based on the Quantum Electrody-
namics theory, Preparata (Arani et al, 1995) describes 
clusters as coherence domains within which information 
transfer is possible and describes how a specific electro-
magnetic wave can remain “confined” in a coherent water 

structure (Bono et al., 2012). J.G. Watterson explains that 
it is a transfer of vibratory energy (oscillation quantum 
of a particle in a crystal lattice also called phonon) with-
out displacement of matter in the coherence domains of 
water (Watterson, 1987), which is similar to the mecha-
nism of proton transfer described by Theodor von Grot-
thuss in 1806 (De Grotthuss, 1806). An important point 
to underline is that these theories have been validated 
experimentally in the thesis of Coudert (Coudert, 2007) 
who was able to observe the trajectory of the electron 
in water in a confined environment using ultrafast laser 
spectroscopy. Concerning the transfer of photons, a simi-
lar mechanism has been proposed but it is much more 
difficult to explain (Henry, 2016).

However, the work of Voeikov has shown that interfa-
cial water can emit light (Voeikov and Korotkov, 2017) 
through an oxidation reaction initiated by an energy in-
take. On this basis, it might be supposed that a water 
containing more colloids (more liquid-solid interface) or 
more nanobubbles (more liquid-gas interface) could emit 
more photons when an electrical discharge is produced 
by the electrophotonic device.

Macroscopic Corona Imaging Studies
As explained in the introduction, the corona effect has 
many applications. Regarding the CEMI, it concerns ap-
plications such as gas discharge visualization. Depend-
ing on the device used, a lot of work has been done in 
the field of health and well-being, notably by K. Korotkov 
(Korotkov, 2013). The use of artificial intelligence in the 
analysis of electrophotonic images is beginning to show 
application in the detection of disease (Janadri, 2017) or 
more generally in medical diagnosis (Kononenko, 2001). 
The studies concerning water are much rarer and have 
focused on the attempt to understand the conditions of 
water in the origin of life (Ignatov and Mosin, 2015). On 
the other hand, the work of M. Skarja (Skarja et al.,1998) 
has shown the ability to differentiate saline solutions 
from water and revealed individual ions when they are 
significant. Our study is therefore to evaluate the perfor-
mance of our CEMI device to differentiate several types 
of water. A statistical analysis of the results will allow us 
to validate or invalidate the device for further research.
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The EDS© Device 
The EDS© (Electrophotonic DataPhoton System) device is 
an instrument initially designed to perform macroscopic 
corona imaging applied to various types of subjects, from 
living body parts to drops of liquid solutions to minerals, 
etc. This prototype device was manufactured in 3 units 
and was developed over several years. By 2009, it was 
being used for various non-academic projects until it was 
acquired by the Company, “SARL-Développement Dura-
ble,” in 2020 to carry out more precise work with a scien-
tific approach. It is designed to pass an oscillating elec-
tromagnetic field of 10 mA at a modulating voltage (8-15 
kV) and frequency (1-400Hz) over a pure quartz electrode 
to generate the corona effect on an experimental object.

The device (see Figure 1) is composed of an AEPG© (Ad-
vanced ElectroPhotonic Generator), an EFUSE© (Electrode 
For Use in Specific Electrophotonic) electrode plate and a 
Hamamatsu HD camera (ORCA IIBT 512G2) coupled to an 
optic equipped with a UV filter (250-380 nm). The AEPG© 

is based on a particular geometry of its power transform-
ers. Coupled with other components controlled by very 
reliable electronics, it produces, with its strong pulse 
voltage, an electromagnetic field on the electrode plate. 
This field is alternately positive and negative, with a pre-
defined frequency selected on 90 Hz in this study. The 
frequency and voltage of the electromagnetic field are 
controlled by Advanced ElectroPhotonic Generator©, a 

self-developed software that also allows synchronization 
with the Hamamatsu camera. This field successively mo-
bilizes electric charges on the surface and in the thickness 
of the object to be analyzed, causing the ionization of the 
gaseous environment around the studied body (plasma 
gas). This ionization creates an electron avalanche which, 
by splitting the gas molecules, releases UV photons that 
are recorded by the Hamamatsu camera. The electron 
avalanche then leads to filamentary structures called 
streamers (Chirokov et al., 2004; Kunhardt and Tzeng, 
1998). Image acquisition provides an idea of the statisti-
cal distribution of light emission during exposure time.

Materials and Methods
Experimental Approach

For each type of water selected, seven samples of the 
same water were collected. Ethanol is added to each 
sample to create a solution with an ethanol concentra-
tion of 1g/L to stabilize the phenomenon (we have found 
experimentally that ethanol allows better reproducibility 
and improved regularity of the corona shape). For each 
of these samples, ten 20 𝜇𝐿 droplets were stimulated, im-
aged, and analyzed. A specially designed pipette holder is 
used to reduce the background intensity on the images 
and to prevent stray light. A conductive nozzle is used 
on the pipette to deposit the droplet on the conductive, 

Figure 1. Scheme of the EDS© device.
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transparent electrode and stimulates it at a frequency of 
90 Hz and a voltage of 11 kV for 2000 ms. The EDS© de-
vice then stores images in 16-Bits TIFF format of the coro-
na discharge generated around the droplet. A database 
of 70 images (some examples are presented in Figure 2) 
for each kind of water is thus obtained.

The study will consist of studying and attempting to clas-
sify water types two by two. These water types are sug-
ary water and salty water, then Native bottled water and 
Montcalm bottled water, then two river waters, from the 
Ariège and Garonne rivers. 

Statistical Analysis

Parameter selection 

The statistical analysis combines several methods that all 
start with the extraction of different parameters (see Ap-
pendix) from the images, such as the mean, the standard 
deviation, and the entropy, among a total of 86 final pa-
rameters (30 for the salty/sugary waters study) that char-
acterize the corona, the streamers or the shapes found in 
the Fast Fourier Transform of the image. A class param-
eter is also defined to identify the groups (respectively 0 
for salty, Montcalm and Ariège waters, 1 for sugary, Native 
and Garonne waters in the different studies). The other 
parameters are separated into numerical and categorical 
parameters and then sorted using between each param-
eter and the class parameter, the Pearson’s chi-squared 
statistic (Pearson, 1900) for the categorical parameters 
and the Pearson product-moment correlation coeffi-
cient (Pearson, 1895) for the numerical parameters. The 
retained parameters are those that are correlated with 
the parameter class with a p-value < 0.05. In parallel, the 
dataset, except for the class parameters, is normalized 
and analyzed by the Lasso model (Robert, 1994) to retain, 

in another way, the significant parameters. Among those 
retained, if two or more parameters are correlated with 
each other (defined by a Pearson’s r value > 0.8; Pearson, 
1895), only the one with the highest correlation with the 
class parameter is retained. The method thus selects a 
set of significant parameters (whose number depends on 
the study) that will be used for the classification.

Classifiers 

The resulting data are studied by five different classifiers 
among which is the KNN (K-Nearest Neighbors) classifier 
(Cover and Hart, 1967), which searches for the class of k 
neighbors in an x-dimensional space with x the number 
of selected parameters and k the number of neighbors 
chosen for classification. The naive Bayes Classifier as-
sumes a conditional independence assumption (Chan et 
al., 1979) and it uses Bayes theorem (Bayes, 1763). The al-
gorithm works by calculating the probability that a given 
data point belongs to each class, based on the features 
of the data point and the probabilities of membership 
of each feature to each class. The class with the highest 
probability is then chosen as the prediction. The other 
three classifiers operate with random hyper-parameters; 
these are the random forest classifier (Breiman, 2001), 
the decision tree classifier (Quinlan, 1986), and the gradi-
ent boost classifier (Freidman, 2001). Hyper-parameters 
are the adjustment parameters of the various Machine 
Learning algorithms (support vector machine [SVM], ran-
dom forest, regression, gradient boost, etc). They differ 
according to the algorithm used. The best way to think of 
hyper-parameters is as the parameters of an algorithm 
that can be adjusted to optimize performance, just as we 
might turn the knobs on an FM radio to get a clear signal. 
For example, if we use random forest, we have the n-es-
timator as a hyper-parameter. This is a hyper-parameter 

Figure 2. Examples of raw CEMI images of a droplet of salty water (left), sugary water (center) and Ariege’s water (right).
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that defines the number of trees to be used in our ma-
chine learning model.

The decision tree classifier is a supervised learning algo-
rithm that works by constructing a tree-like model of de-
cisions based on the features of the data. At each internal 
node of the tree, the algorithm splits the data based on a 
feature value, and the resulting splits are called “leaves.” 
Each leaf represents a decision based on the features of 
the data, and the final prediction is made by traversing 
the tree from the root to a leaf. The random forest classi-
fier works by training multiple decision trees on random 
subsets of the training data and aggregating the predic-
tions of those trees to make a final prediction. The gra-
dient boost classifier is an iterative process in which a 
model is trained to predict the residuals errors of a previ-
ous model, and then the predictions of the current model 
are added to the predictions of the previous model to im-
prove the overall accuracy. This process is repeated until 
a predetermined number of models have been trained, 
or until the error of the model has reached a certain 
threshold. For each of these classifiers, a cross-validation 
is performed with a stratified K-Folds cross-validator with 
k=8. Cross Validation is a technique for evaluating a ma-
chine learning model and testing its performance. One of 
the popular ways of doing a K-fold cross validation is to 
randomly shuffle the total data set and then divide the 
data set into K mutually exclusive identically sized sub-
sets. Train on K-1 of these subsets and test on the Kth 
subset. Then go round-robin, K times. Train on another 
K-1 of these subsets and test on the Kth subset. Each 
time the tested Kth subset is different. The classification 

accuracy is then the average of all the K tests. The aver-
age of the AUC (Area Under Curve) (Narkhede, 2018) re-
sults for each classifier is then used to compare them. If 
one of the three classifiers with hyper-parameters is the 
best or the second-best classifier, an algorithm is used to 
try a combination of many hyper-parameters and retain 
the best combination of them. The classification results 
are the results given by the best and second best of the 5 
classifiers after hyper-parameter optimization.

 
Experimental Results
Differentiation Between Salty Water  
and Sugary Water

Two solutions were prepared from salt (Guérande sea 
salt) and sugar (organic cane sugar). They were chemical-
ly very different to easily differentiate aqueous solutions 
during these initial trials. For this experiment, salty and 
sugary water samples were prepared from demineralized 
water with a salt and sugar concentration of 5g/L and an 
ethanol concentration of 1g/L. Droplets of those samples 
were then stimulated, imaged, and analyzed successively 
at different ambient air temperature and hygrometry 
(17.0±0.8°C, 63.6±2.4% of humidity for sugary water and 
20.73±0.13°C, 54.02±0.47% of humidity for salty water). 
For this first experiment, 30 parameters were computed 
for each image. The Lasso method retains 6 parameters 
and the correlation with class method retains 17 param-
eters, including the 6 of the Lasso method. Three of the 
17 selected parameters were highly correlated with some 

Figure 3. Classifiers’ comparison with evaluation metrics (left) and Receiver Operating 
Characteristic (ROC) (Fan, 2006) curve (right) for the salty and sugary waters.
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other selected parameters and were therefore excluded. 
The 14 resulting parameters are std, richness, h1, HS_val-
ue, meanStream, coronaLength, firstHalfLife, nbStreamer, 
frequAngStreamer, firstDecay, ampl2Pic, biodiv, diff1er-
sPics and HS_dist. For each of the 5 classifiers, an 8-splits 
K-Fold cross-validation is done and the results are shown 
in Figure 3. 

The two best classifiers based on the AUC are the random 
forest with an AUC = 1.0000 and the naive Bayes with an 
AUC = 0.97546. The random forest classifiers use hyper-
parameters that would be optimized to get the final clas-
sifiers. Once the best hyper-parameters are computed, an 
8-splits K-Fold cross-validation is applied on the resulting 
classifier to strengthen the results, and the naive Bayes is 
kept as it is (Figures 4a and 4b).

The results obtained between each cross-correlation vary 
little. It means that the model is reliable and predicts the 
right result almost systematically and it allows us to dif-
ferentiate a salty water at 5g/L from a sugary water at 
5g/L with an accuracy of 99%. The classification can be 
visualized in Figure 5. In this experiment, for each of the 
17 significant parameters (the 14 used + the 3 highly cor-
related to at least one other significant parameter), every 
2-D graphic can be shown to visually observe the classifica-
tion. In Figure 5, the 2-D graphics can be seen for 7 of the 
17 parameters that are arranged from top to bottom: an-
gular frequency of the streamers (frequAngStream), mean 
of the streamers (meanStream), first decrease (firstDecay), 
second peak amplitude (ampl2Pic), length of the corona 
(coronaLength), standard deviation of the image (std) and 
Simpson’s Biodiversity Index applied on the image (biodiv).

Differentiation Between Montcalm  
and Native Bottled Water

The aim of this study was to try and differentiate between 
two chemically similar waters in plastic bottles. To do so, 
this experiment was carried out with Montcalm water and 
Native water since they are both low-mineralized waters. 
For this experiment, samples were collected from bot-
tles of each water that were stored in the same room for 
several hours to equalize the temperature. Ethanol was 
added to obtain a concentration of 1g/L. They were then 
stimulated, imaged, and analyzed successively at the same 
ambient air temperature and hygrometry (17.15±0.46°C 
and 68.67±0.82% of relative humidity). With the 30 calcu-
lated parameters, the classification results were not very 
accurate; therefore, 56 new parameters were calculated 
for each image and added to the data. On the 86 param-

Figure 4a. K-Fold cross-correlation for the best model for 
salty and sugary water.

Figure 4b. K-Fold cross-correlation for the second-best 
model for salty and sugary water.
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Figure 5. Scattergram graphics for frequAngStream, meanStream, firstDecay, ampl2Pic, coronaLength, std 
and biodiv. The colors are orange for class 0 (salty) and blue for class 1 (sugary).

eters computed for each image, the correlation with class 
method retains 18 parameters (std, richness, l1, firstDe-
cay, ampl1Pic, meanRatioSlopeMean, medianRatioSlope-
Mean, correlationStd, ratioSumEntropyCircle, meanRa-
tioSlopeHigh10, medianRatioSlopeHigh10, ampl2Pic, var-
RatioSlopeMean, sumEntropyCircle, halfHighratioHigh10, 
entropyRatio, varHSCSdist, secondHalfLife) and the Lasso 
method retains 5 (richness, l1, nbCorrelInf75, nbCor-
relInf50, nbCorrelSup95) of which 3 are already retained, 
keeping 21 parameters altogether (richness, l1, nbCor-
relInf75, nbCorrelInf50, nbCorrelSup95, std, firstDecay, 
ampl1Pic, meanRatioSlopeMean, medianRatioSlope-
Mean, ratioSumEntropyCircle, meanRatioSlopeHigh10, 
medianRatioSlopeHigh10, ampl2Pic, varRatioSlopeMean, 

sumEntropyCircle, halfHighratioHigh10, entropyRatio, 
varHSCSdist,secondHalfLife). For each of the 5 classifiers, 
an 8-splits K-Fold cross-validation is realized, and the re-
sults are shown in Figure 6.

The two best classifiers based on the AUC are, like the first 
experiment, the random forest with an AUC = 0.98184 
and the naive Bayes with an AUC = 0.97109. The best hy-
per-parameters for the random forest are computed, an 
8-splits K-Fold cross-validation is applied on the resulting 
classifier to strengthen the results, and the naive Bayes is 
kept as it is (Figures 7a and 7b).

The obtained results lead to a slight decrease in nearly 
all the metrics for a very little increase of the AUC for the 
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Figure 7a. K-Fold cross-correlation for the best model for 
the Native and Montcalm waters.

Figure 7b. K-Fold cross-correlation for the second-best 
model for the Native and Montcalm waters.

Figure 6. Classifiers compared with evaluation metrics (left) and ROC curve (right) for the Native and Montcalm waters.
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random forest. The naive Bayes, without hyper-parame-
ters, remains the same. Those algorithms allow the tech-
nology to classify the water samples of Native and Mont-
calm with more than 92% accuracy with a good reliability.

In this experiment, for each of the 21 significant param-
eters (the 21 used + the 1 highly correlated to at least one 
other significant parameter), every 2-D graphic allows us 
to visually observe the classification. Figure 8 shows the 
2-D distribution graphic for 7 of the 17 parameters that 
are arranged from top to bottom: standard deviation of 
the image (std), richness of the image (richness), L1-norm 
(l1), first decrease (firstDecay), first peak amplitude (am-

Figure 8. Scattergram graphics for std, richness, l1, firstDecay, ampl1Pic, meanRa-tioSlopeMean and  
medianRatioSlopeMean for Native and Montcalm water.

pl1Pic), mean of the ratios of the mean slope (meanRatio-
SlopeMean) and median of the ratios of the mean slope 
(medianRatioSlopeMean).

Differentiation Between Ariège Water  
and Garonne Water

This experiment was carried out with waters from Ariège 
and Garonne, which are the two main rivers closest to 
the laboratory. The aim was to show that the technology 
could allow the differentiation between natural waters 
with potential applications in the environmental field. 
For this experiment, samples were collected from one 
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Figure 9. Classifiers compared with evaluation metrics (left) and ROC (Receiver Operating Characteristic) 
curve (right).

Figure 10b. K-Fold cross-correlation for the second-best model 
for Ariège and Garonne waters.

Figure 10a. K-Fold cross-correlation for the best model for 
Ariège and Garonne waters.
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Figure 11. Scattergram graphics for mean, nbDeperd95, firstDecay, ampl1Pic, diff1ersPics, stdLineMean 
and stdRatioSlopeMean.

Figure 12. The 2-D distribution graphics for nbstream and coronalength for salty−sugary water (left), 
for std and sumEntropyCircle for Native−Montcalm water (middle), and for mean and stdLineMean for 
Ariege−Garonne water (right).
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location in each river, then stored in the same room for 
several hours to equalize the temperature. They were 
then stimulated, imaged, and analyzed successively 
at the same ambient air temperature and hygrometry 
(26.73±0.11°C and 50.97±1.08% of relative humidity). Of 
the 86 parameters computed for each image, the corre-
lation with class method retains 26 parameters and the 
Lasso method retains 6 of which 3 are already retained, 
keeping 29 parameters altogether (mean, variance, 
stdLineMean, richness, nbCorrelInf75, nbCorrelSup95, 
nbDeperd95, firstDecay, ampl1Pic, diff1ersPics, stdRa-
tioSlopeMean, medianRatioSlopeHigh10, correlation-
Mean, meanRatiosZones30, stdRatiosZones45, ampl2Pic, 
meanRatioSlopeMean, medianRatioSlopeMean, ratio-
SumEntropyCircle, medianRatioSlopeHS, varCSHSdist, 
meanHSCSdist, hs_ValHS, meanRatioSlopeHS, halfHighI-
CratioHS, firstHalfLife, secondHalfLife, nbStreamer, dis-
tance1stDecay). For each of the 5 classifiers, an 8-splits 
K-Fold cross-validation is done and the results are shown 
in Figure 9.

The two best classifiers based on the AUC are the random 
forest with an AUC = 0.96329 and the gradient boost with 
an AUC = 0.94270. Both of those classifiers use hyper-pa-
rameters that would be optimized to get the final classi-
fiers. Once the best hyper-parameters are computed, an 
8-splits K-Fold cross-validation is applied on the resulting 
classifier to strengthen the results (Figures 10a and 10b). 
The classification results can be viewed in Figure 11.

The obtained results lead to a slight decrease in nearly 
all the metrics for a very little increase of the AUC for 
the random forest and to a quite consequent increase 
in most of the metrics for the gradient boost. It allows 
the technology to classify the water sampled in Ariège 
and Garonne with nearly 94% accuracy with a good reli-
ability. In this experiment, for each of the 29 significant 
parameters (the 28 used plus the 1 highly correlated to at 
least one other significant parameter), every 2-D graphic 
allows us to visually observe the classification. In Figure 
11, the 2-D distribution graphics can be seen for 7 of the 
17 parameters that are arranged from top to bottom: 
mean (mean), number of losses lower than 95% (nbDe-
perd95), first decrease (firstDecay), first peak amplitude 
(ampl1Pic), first peaks difference (diff1ersPics), standard 
deviation of the means of line (stdLineMean), and the 
standard deviation of the ratios of the mean slope (st-
dRatioSlopeMean).

Discussion
The most interesting results to emerge from this study 
are that CEMI technology combined with machine learn-
ing algorithms can differentiate between waters of dif-
ferent chemical composition. Although the computed 
parameters taken from the images and the classification 
methods can be reproduced with other electrophotonic 
devices, the results could be slightly different due to the 
specific conception of the EDS©. A new-generation, high-
resolution scientific video camera that is more precise 
and can follow the evolution of the corona shape during 
capture, rather than taking a cumulative image and us-
ing stronger algorithms, should improve the quality of re-
sults. Except for room temperature and hygrometry, the 
room environment has not been monitored. The use of 
a clean room with controlled room parameters (air con-
ditioned, absence of fine particles suspended in the air, 
and so on) and controlled electromagnetic interferences 
could produce more precise results but no such clean 
room was at our disposal. It would be interesting to add 
other measurement devices to go beyond classification 
and make it a tool to characterize water. Besides all those 
remarks, the results appear to be relevant to classify the 
different kinds of water using macroscopic corona imag-
ing as shown by the algorithms results and Figure 12.

Conclusion
In this study, we used the specific device called EDS© 

to take UV-range pictures of corona discharges around 
droplets of water and we selected some parameters 
from these pictures to be used as predictor variables 
for a Data Science model. The aim of our study was to 
demonstrate the existence of a coherence between the 
photon energy fluxes generated during the irradiation 
of drops by EDS© and the physico-chemical properties 
of water, using a Data Science approach. The model is 
currently able to classify water types with an overall ac-
curacy of more than 90%.

This suggests that the selected parameters and the ma-
chine learning models are effective at distinguishing 
between different types of water based on the images 
taken by the specific device. The ability to classify water 
in this way and the use of EDS© device to get information 
on liquids by a photonic method may have potential ap-
plications in a large variety of fields. 
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Concerning the measurements, we have a photonic tool 
that enables rapid (< 2 sec) and non-destructive capture, 
and a miniaturized tool that could be immersed in any 
environment. To quickly classify the waters tested using 
data science, we have constructed most of the 86 param-
eters used in this first approach. The list is not exhaustive. 
Our challenge was to show that, over a batch of captures, 
the photon fluxes captured during the corona effect are 
organized with a certain coherence linked to the prod-
uct tested. We envisage industrial applications where this 
technology could be used as a “quality alert.” Before car-
rying out batteries of measurements on solutions to be 
controlled, we propose the possibility of monitoring the 
“photonic drift” of an in-process product in relation to an 
established situation. The monitoring and control of in-
dustrial processes is moving toward the use of big data. 
CEMI technology can rapidly provide large quantities of 
data. In the same way, we can imagine applications to 
identify counterfeit products from a few drops of liquid, 
for example, in wines and honeys, products with a high 
added value, and so on.  More broadly, at a time when 
everyone is asking questions about the quality of natural 
waters and their evolution, we think it could be interest-
ing to map the world’s waters with CEMI to observe varia-
tions. The data collected could be studied by researchers 
in a variety of ways (parameters, statistical tools, etc). It 
is possible to compare the CEMI with the microscope; on 
this basis, many applications are still to be discovered.
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Appendix:
Parameters:

As the process is patent pending, only a few parameters 
are detailed here. We’ll be able to provide interested 
scientists with further details following an NDA (No 
Diffusion Agreement) contract.

mean:

Average pixel intensity of the 260*260 image around the 
center of mass without background noise.

Mean = (Sum of all pixel values) / (Total number of 
pixels)
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std:

Standard deviation of pixel intensity of the 260*260 
image around the center of mass without background 
noise.

σ = sqrt((1/N) * Σ(xi - μ)²)

Where:

• N is the total number of pixels in the image (260 * 
260 in your case).

• xi represents each pixel value in the image.

• μ is the mean value of the pixel intensities in the 
image.

• Σ represents the sum over all pixel values in the 
image.

variance:

Pixel intensity variance of the 260*260 image around the 
center of mass without background noise.

Variance = σ²

richness:

Number of sectors (number of different intensities) -1, 
given by the formula 

with ps the probability of obtaining each intensity and 

with q=0.

biodiv:

Simpson’s Biodiversity Index applied to the image. This 
is the probability that two pixels taken at random do not 
have the same intensity value. It is given by the formula 

with ps the probability of obtaining each intensity and 

 with q=2.

l1:

L1 norm is the sum of all pixel intensities.

 

Graphic example of Average Circular Intensity (Average of 
the pixels making up circles around the center of mass in 
function of the distance to the center of mass)

where f(i,j) is the intensity of the pixel with coordinates 
i,j.

l2:

The L2 standard gives an idea of the total photon 
intensity and should remain roughly constant for similar 
materials. It is given by the formula 

where f(i,j) is the intensity of the pixel with coordinates 
i,j.

FirstHalfLife:

On the Average Circular Intensity curve, this criterion 
measures the distance between the circle of highest 
intensity (the HotSpot) and the circle where intensity 
has been divided by 2. In other words, it measures the 
distance for intensity to halve from the HotSpot.

FirstHalfLife = dHsp/2 - dHsp

Where:

• dHsp is the distance between the hotspot and the 
center of mass.

• dHsp/2 is the distance between half of the hotspot 
value and the center of mass.
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secondHalfLife:

On the Average Circular Intensity curve, this criterion 
corresponds to the distance required for the average 
circular intensity to drop from 50% of the HotSpot to 
25% of the HotSpot.

SecondHalfLife = dHsp/4 - dHsp/2

Where:

• dHsp/4 is the distance between one-quarter of the 
hotspot value and the center of mass.

• dHsp/2 is the distance between half of the hotspot 
value and the center of mass.

nbDeperd95:

On the Average Circular Intensity curve, we measure, 
from the hotspot, the ratio between the intensity at the 
distance n+1 and the intensity at the distance n. The 
parameter nbDeperd95 is the count of the occurrences 
when the ratio is inferior to 0.95.

h1:

 The H1 standard provides a measure of the overall average contrast between all the pixels on the image. It is given 
by the formula :

where f(i,j) is the intensity of the pixel with coordinates i,j.

Appendix Figure 1


